Solving k-cluster problems to optimality with semidefinite programming
نویسندگان
چکیده
This paper deals with the computation of exact solutions of a classical NP-hard problem in combinatorial optimization, the k-cluster problem. This problem consists in finding a heaviest subgraph with k nodes in an edge weighted graph. We present a branch-and-bound algorithm that applies a novel bounding procedure, based on recent semidefinite programming techniques. We use new semidefinite bounds that are less tight than the standard semidefinite bounds, but cheaper to get. The experiments show that this approach is competitive with the best existing ones.
منابع مشابه
A Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملFast Low-Rank Semidefinite Programming for Embedding and Clustering
Many non-convex problems in machine learning such as embedding and clustering have been solved using convex semidefinite relaxations. These semidefinite programs (SDPs) are expensive to solve and are hence limited to run on very small data sets. In this paper we show how we can improve the quality and speed of solving a number of these problems by casting them as low-rank SDPs and then directly...
متن کاملClustering is semidefinitely not that hard: Nonnegative SDP for manifold disentangling
In solving hard computational problems, semidefinite program (SDP) relaxations often play an important role because they come with a guarantee of optimality. Here, we focus on a popular semidefinite relaxation of K-means clustering which yields the same solution as the non-convex original formulation for well segregated datasets. We report an unexpected finding: when data contains (greater than...
متن کاملInterior Point and Semidefinite Approaches in Combinatorial Optimization
Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optimization, and the development of efficient primal-dual interior-point methods (IPMs) and various first order approaches for the solution of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 136 شماره
صفحات -
تاریخ انتشار 2012